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Recurrent Random Walks and the Absence of 
Continuous Symmetry Breaking on Graphs 
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We consider geometrically disordered systems with a continuous symmetry 
group G, where the internal degrees of freedom are attached to the vertices of 
a graph. We show that equilibrium states remain G-invariant at any tem- 
perature T> 0 if a random walk on the graph is recurrent. This generalizes a 
previous result obtained by Cassi. 
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breaking. 

1. INTRODUCTION 

The problem of spontaneous  symmetry  breaking in disordered systems 
with spat ial ly discrete r andom structure,  such as spin glasses near  the per- 
cola t ion threshold,  raises technical as well as conceptual  questions. Besides 
the lack of t ransla t ion invariance,  the concept  of d imensional i ty  becomes 
ambiguous,  and the not ion  of a lower critical d imension appears  to be lost. 
Therefore one is forced to look for a more  general but  possibly less explicit 
cr i ter ion governing symmetry  breakdown.  

Recently, Cassi ~1~ considered classical and quanta i  ferromagnets  with 
internal O(n) symmetry  and with spins that  reside on the nodes of a generic 
network.  He showed that  the spontaneous  magnet iza t ion  in such models  
vanishes at any finite tempera ture  if a r andom walk on the underlying 
network is recurrent,  i.e., returns to its s tar t ing point  with probabi l i ty  one. 
This result geoeralizes the familiar d imensional i ty  cri terion ~2'31 for the 
absence of long-range order,  since random walks on regular  d-dimensional  
lattices are known to be recurrent  when d~< 2. 
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In this paper, which is stimulated by Cassi's work, we extend his result 
in several respects: 

1. The symmetry group is promoted to an arbitrary connected Lie 
group. In addition, we consider more general two-body interactions which 
include ferro- as well as antiferromagnetic couplings; moreover, these 
couplings are not required to be uniformly bounded. 

2. We prove that thermal equilibrium states on "recurrent" networks 
remain invariant under the symmetry operation at any finite temperature. 
The absence of long-range order is then a special case. 

We deal primarily with classical systems, with equilibrium states 
described by Gibbs measures. The precise statement of our result is 
formulated in the theorem in Section 2. 

The proof of this theorem in Section 3 needs no technical innovations. 
It combines random walk arguments with an entropy estimation method 
put forward originally by Araki, 14~ Dobrushin and Shlosman, ~51 and 
Pfister. t6) We also adopt ideas from the work of FrShlich and Pfister tT~ on 
the absence of crystalline order in two dimensions. 

Finally, in Section 4, we point out that our theorem (with modifica- 
tions concerning the notion of equilibrium states) also holds in the case of 
quantum statistics. 

2. DEFINITION OF CLASSICAL MODELS; RESULT 

Let c~ = ( V, B) be a connected graph with a countably infinite set V of 
vertices or sites and a prescribed subset B of unordered pairs of sites; B is 
the collection of bonds of (#. Thus, by definition, the graph has no multiple 
bonds. The family of finite subsets of V is denoted by ~/:. For a bond 
b={x,y}eB,  x, yeV, we write b=xy, for short. We assume ff to be 
locally finite, which means that the set of neighbors of every site is finite, 

Nb(x):={yeV\{x} [xyeB}e~t/-, x e V  (1) 

The internal degrees of freedom are introduced by fixing at each site a copy 
of a compact ff2-manifold M carrying a cgZ-operation of a connected Lie 
group G, G x M ~ M, (g, ~) ~-, g~. In the example of a classical magnet 
with n-component spins, M is the sphere S " - I ,  subject to the natural 
action of the group SO(n). The total configuration space is given by 
MV=12. The action L on 12 of the group G is defined in terms of 
components according so 

(Lgo)).~:=(gog).~:=go9,., x~V, o~xeM (2) 



Recurrent Random Walks 155 

The space M v may be equipped with the a priori product measure 
Vv = v | v, where v is a G-invariant finite measure on the Borel algebra 
~ ( M )  of single-site configurations. In the above example, v is the area 
measure on $"-1.  

The model interaction is determined by coupling coefficients 

x: B--. R\{0}, .~v ~--~ K.,..,. 

and by a pair potential ~b(c~, f l)= ~b(fl, a), ~, fl ~ M, which is G-invariant, i.e., 
~b(g~, gfl)= qt(a, fl) for any g~G,  and smooth, i.e., ~bEff 2. 

The boundary of a finite subset A ~ "V is defined by 

OA := { x E f 2 \ A  I There is a y e A  such that x ) ,~B}  (3) 

Then the local Hamiltonian has the form 

HA(CO ) = ~ ~c.,..,.~b(co.,., co,.) (4) 
x ,  y ~ A ~ PA 

A local Hamiltonian is associated with a Boltzmann-Gibbs distribution r A 
such that the conditional expectation of an event A E ~(f2) is given by 

1 
rA(A L q ) = Z - - ~  IA exp[--HA(r dvA(~) (5) 

with the conditional partition function 

Z(q ) = f M., exp[--  H A((q ) ] dv A(~) (6) 

Here (q denotes the configuration which coincides with ~ ~ M A on A and 
with q ~ M  Ar on A"= V\A,  The temperature variable 1/kBT has been 
absorbed in HA. 

Since our emphasis is on infinite classical systems, equilibrium states 
will be represented by Gibbs states. We recall that Gibbs states are measures 
over ~(12) with conditional probabilities on A~'r that match the 
Boltzmann-Gibbs distribution rA. More precisely, a probability measure 
3: ~(g2)--+ [0, 1] is a Gibbs state corresponding to HA if 

r = rA~Er]  | (7 )  

holds for every A E r  where rA,Ez] is the image of ~ under the restriction 
map rA,.: MV ~ M A~. 

Assuming that the collection of Gibbs states of our model is non- 
empty, we shall prove the following: 
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T h e o r e m  2.1.  
probabilities 

If the Markovian random walk on c~ with jump 

~I~c~,,1/~Z_-E Nb xl I~C.,=I, xy~B 
P""' = (0, otherwise (8) 

is recurrent, then every Gibbs state specified by the local Hamiltonians H A 
is G-invariant, i.e., Lg[z] := r o L~- ~ = r, for every g ~ G. 

Before proceeding with the formal proof, let us briefly sketch the basic 
argument. 

Starting with a given Gibbs state ~ and some fixed finite set of sites 
A ~ "//", we connect a prescribed probability distribution "far away" from A 
smoothly with a "twisted" distribution over A, which is generated by an 
application of G. The twist is parametrized by a smoothly varying function 
f on the graph 03, which is constructed with the help of local entrance 
probabilities of a recurrent random walk on 03 visiting A. This random 
walk device substitutes for the lack of translation invariance and con- 
stitutes a key element of the proof. The theorem is finally established by 
showing that the relative entropy of the twisted and the original distribu- 
tions vanishes, which implies that both distributions agree on every A ~ ' t :  
and thus on V. 

3. PROOF 

3.1. Construction of a Twist  Map  

Let U =  ( g , ) , ~  be an arbitrary but fixed subgroup of G, with go the 
neutral element. To prove the theorem, it suffices to establish that every 
Gibbs state is U-invariant, since G is connected. 

We introduce the twist map/" , :  I-2--. 12 by 

(F,(co)),.:=g~f~.,.)co.,., ~ Q ,  x~V (9) 

with the parametrization f supplied by the following lemma. 

L e m m a  3.1. For each ~ > 0 and each nonempty A ~ ' /"  there exists 
a map f :  V--~ [0, l ]  such that: 

(a) f(x)r for at most a finite number of sites x s  V. 

(b) f ( x ) =  1 for x~A. 

(c) Z , :~B I~,:,l [ f ( x ) - f ( y ) ]  z<~. 
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Proof of the Lemmafl We enumerate  the sites of c~, V = {x,, I n ~ I~ }, 
such that `4 = {x~ ..... xi} and `4k := {x~l l>~k}. Let p,. denote the proba-  
bility measure for random walks on f9 as in the theorem starting from 
xe`4~. We represent the event "The random walk enters `4 before zJk" 
by At ,  k > i. Obviously:  

(a) P , . (A~)=0  for x~Ak .  

(b) P , . ( A k ) = I  f o r x 6 A .  

Hence fk(x)  := P,-(Ak) is a possible candidate for the map  f ;  we have 
to show that proper ty  (c) also holds for fk with some value ofk.  For  this 
purpose we note that the events (Ak)k>i form a monotonical ly  increasing 
sequence, i.e., At ~ A,,, for i < k ~< m, and the union I.)k > i Ak corresponds to 
the event "'The random walk enters .4 at some time," since the number  of 
jumps  before hitting `4 is finite. Therefore, 

P x ( A , ) I " P . , - ( U  A,)  as k ~ c ~  
\ l > i  

By assumption,  r andom walks on .~ are recurrent, so that A vL ~ is visited 
eventually with probabil i ty 1. This implies 

and 

,10, 

P.,.(Ak) --+ 1 as k ~ o o  (11) 

In order to make the following arguments  more transparent  without 
sacrificing rigor, let us imagine ff to be an electric network where each 
bond is an Ohmic  resistor with conductance Ixx,.I; assume the sites x e A  
to be connected with the terminal of a voltage source (voltage = 1), while 
the sites x e `4k, k > i, are grounded. Denote the electric potential on f# by 
(~(x)  I x ~  V). In the "shell" 

D := V\ (A w `4k) ( k > i )  

conservation of charge and Ohm's  law lead to 

I K.,-.,,I [ ~ ( x ) -  ~,(y)] = o, x e / 9  (12) 
v ~ N b  .,.'1 

-" The following arguments  are based on the assumption of Theorem 2.1: a more general proof  
of this lemma may be found in ref. 8. 
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and therefore 

~k(x) = y '  p.,-.,4b (y)  (13) 
y e Nb(.~:  ) 

which means that ~ is a harmonic function on ~ with the boundary values 

10 for x e A  
~,(x)= for XeAk,  k > i  (14) 

Let us go back to random walks for a moment. For each path (- '0)j~ 
starting in D, the time independence of the jump probabilities and the 
Markov property imply 

(xj)je ~ e A ,  r (-'0+ ~)j~ ~ e Ak (15) 

which entails 

P.,.(Ak)= ~ px.,.P:.(Ak) (16) 
.v e N b ( x )  

Hence fk(x) = P,.(Ak) is harmonic on if; moreover, it has the same bound- 
ary values as r so that fk(X)=~O(X), as follows from the maximum 
principle. We now return to the electric network. The total current flowing 
in the network equals the current passing through the boundary 0A, 

Ik = ~ I~,-.J [fk(X)--.fk(Y)] 
xeA ,yeOA 

= ~ Ix.,-,.I [1 - f k ( y ) ]  k-~. ,  0 (17) 
xeA..l'eOA 

The total power absorbed within the network is Q~ = voltage drop x Ik. It 
may also be computed by summing up the power absorbed in each resistor, 

Qk = ~ Ix.,..,.I [fk(x)-- f t , (y)]  2 k ~  0 (18) 
.vy e B 

By choosing a sufficiently large value k > N(e), we find that fk does indeed 
have the properties stated in the lemma. 

3.2. T w i s t e d  Gibbs S t a t e  

The map Ft gives rise to a twisted Gibbs state 

F,[ 'r]  = "t o Ft -I 
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We write R =  {xe  V l f ( x ) = 0 } ,  with f chosen as in the lemma. Then 

where 
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rg[Z] =rR[F,[v]]  (19) 

rR: MV-~ M R, o)~-*oo ~ R 

is the restriction map. With respect to the measure F , [ r ] ,  the conditional 
probability of an event A ~ M v with indicator function 1A is expressed by 

r ,  Ev](o~eA I~ rR=q) 
1 

- z(n) ~.1~ 1A(F,((tl))expE-HR,((q)] dvR,.(r 

_ 1 fA 1A((q)expE--HR~~ Z(rl) ~.~ 

where we used the G-invariance of v and rR o F, = rR. We set 

which reads explicitly 

w,(. ,)  = F. 

W, = HR~~ F _ , -  HR, 

Kx.,.[~b(g _r g_r162 -- ~b(r r ] 
x y  ~ B 

Then the unconditional probability of A turns out to be 

x exp[--HRr dvR,(() drR[r](q)  

= f~ 1Ae-W' dr 

(20) 

(21) 

(22) 

(23) 

The second equality results from the compatibility relation (7) for Gibbs 
states and shows that the image measure F , [ r ]  has the density 

dF,[r] =e_W, (24) 
dz 

relative to r. 
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3.3. Energy Est imate 

For estimating the entropy, we need a bound on the excess energy 
created by twisting I W, I for fixed values oft. We expect that I W, I = O(t) 
due to "pre-twisted" configurations. It is convenient to eliminate a possible 
linear term in I W, I and to consider I W, + W_,I instead, tT~ For this purpose 
we write 

(~(g,ct, f l )=:F(t ,  ot, fl), ot, f l ~ M  (25) 

The Taylor formula yields 

F(t, ~, /3) + F ( - t ,  ~, /3 ) -  2F(0, ~,/3j 

f' = t  2 (1- la[)O~F(at ,  cq/3)da=:K,(e , /3)  (26) 
- I  

Here, 0~F denotes the partial derivative of F with respect to its first 
argument. Since we assume M to be compact and O~F to be continuous, 

lOaF(t, ct,/3)1 = lOaF(O, g, ot, fl)[ ~< sup 3~F(0, r =: C (27) 
~t,/'J E M 

with C <  ~ .  Consequently, IK,(~,/3)1 ~< Cfl-, and 

[~b(g,~,/3) + ~b(g_ ,ct, fl) - 2~b(~,/3)1 ~< C t2 (28) 

for all ct, f i t  M, t~ R with C>0 .  This inequality provides a bound on 
I W, + W_,I, required below. 

Remark. The proof of Theorem 2.1 may be completed already at this 
point by combining the energy estimate (28) with an argument given, for 
instance, in ref. 11. However, we prefer not to follow this technically elegant 
but tess convenient shortcut. 

3.4. Entropy Est imate 

Let us first recall some familiar facts concerning relative entropies. 
Consider two probability measures/l~ and/~,_ on a common space (~, d ) ,  
where ~r is a a-algebra of events, and /~(Q)  =/~2(Q) = 1. We assume/~ to 
be absolutely continuous with respect to/C,, with the density d/z~/d/~2. The 
entropy of F~ relative to I~2 is defined by 

S(p, I#_~):= - [ I n  (dS,'~ dF_, (29) 
d \dud 
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and has the following properties: 

(E) S(p.t [/~2)~<0, with equality if and only i f# ,  =/~2- 

Let sO'___ ag be a sub-a-algebra, with p'~ =p~ 1" ~r and p~ = P2 r ,~" 
denoting the restrictions of #l and P2 on ag'. Then: 

As a final step in proving the theorem, we estimate the relative entropy 
of a Gibbs state z and its image F,[z].  In order to apply Lemma 3.1 and 
the bound (28), we consider 

s(/~,Ez] | Iv|  

= s ( v , [ z ]  I t ) +  s ( v _ , [ z ]  I z) 

=;~ W, dF,[z]+ fa W_,dF_,[z]  

= fa W, o r , &  + f,, W_, o F_,dz  

= fe (2HR~-- Hw o Y,-- HR~ o F ,) dz (30) 

We note that the integrals are well-defined, since R"~'I ~. Using the 
inequality (28) in combination with the lemma, we estimate 

S(F,[z] | r _ , [ z ]  I z |  

.vy �9 B 

x [2~b(a).,, o9.,,)- ~b(g,fl.,io)x, g,fl.,.)oo,.)- ~b(g_,fc.,~o).,, g_ ,fo,lo).,.)] dz 

>/-f~, Y I~:.,..,.I 
x y  �9 B 

x Idp(g,lfc,.i_fo.llwx, to.,,) + ~b(g,ls.l.,. I _/(xll(.Dx, ( . D y )  - -  2r oo,31 dr 

-Cr ~ I~.,,I [ f ( x ) - - f (Y ) ]  2dT 
x r  �9 B 

= --CI2 IQ g dT = -Ct2e (31) 
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On A = {xe  V I f ( x ) =  1} the uniformly twisted Gibbs state Lg,[z] agrees 
with F , [ r ] ,  

(rA o L~,)Er] = (r~,o r , ) [ r ]  (32) 

For the probability measures 

#, := (r A o Lx,)Er] | (rA o Lx_,)Er] (33) 

#2 := r~ [ r ]  | r,t I t ]  (34) 

the monotonicity (M) of the relative entropy yields 

S(#l I/~2)>~ S(F, Er] |  I r |  >1 -CtZe (35) 

Since Lx,[z] is independent of the choice of t > 0 ,  we infer that 
S(/~, 1/~2)>~0; but the extremum property (E) requires S(/~1 I/~z)~<0; 
therefore/al =/a~, and thus 

{r,,o L,,)Er] = raEr] (36) 

holds for every Am't ' .  The algebra of measurable events M(M) | is 
generated by 

g : =  {rnl[A] [ A ~ V', A E ~ ( M )  | } (37) 

which is closed under intersection. By the uniqueness theorem for the 
extension of measuresJ 9~ the equality 

Lg,[T] [ ' g = r  ['g 

implies 

L . , [ ~ ]  = 

whereby the proof is completed. 

4. Q U A N T A L  S Y S T E M S  

Some years ago, Bonato etal. (t~ demonstrated that the invariance 
of equilibrium states of two-dimensional classical and quantum models 
with continuous internal symmetry on a regular lattice follows from 
Bogoliubov's inequality without requiring translational invariance of the 
Hamiltonian. Here, we point out that the lattice can be replaced by a 
generic graph so that the quantal analog of our theorem is obtained 
without further efforts. To outline the argument, we use the terminology of 
ref. 10. 
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Equilibrium states of quantal systems on a countably infinite graph 
may be represented by expectation value functionais on the (norm closed) 
C*-algebra of observables ~r 09: ~r --. R, 

~d= U .~/. 
A c - ~ t  

where dA is the C*-algebra of observables on A � 9  The continuous 
symmetry is described by a one-parameter group of automorphisms 
( a , . ) ~  such that a.,.~ =~4  where o.,. := Q.,.~ v a.,(x). In this frame a state 
o9 is said to be symmetric if 

o~flr, A ) = og(A) 

for all A �9 ~ ,  or equivalently, 

dflr~A)ds .,.=o = 0  

for all A �9 UA ~ ,  o~/A. 
The Hamiltonian is introduced by the Jbrmal expression 

H= y" H(A) (38) 

and we adopt the assumption on H(A) made by Bonato etal. ~~ In 
particular, asH(A)= H(A), A �9 ~t ~. It follows that the terms 

d d .~=o.,=o j(x, y) := ~ss ~ co(a,.(x) a , (y )H)  (39) 

which may be interpreted as coupling coefficients, are well defined and 
satisfy: 

(i) j (x ,y )=j (y ,x ) ,  x , y � 9  
(ii) Y'.:.~vj(x, y ) = 0 ,  x � 9  V. 

However, we restrict the local Hamiltonians further by requiring: 

(iii) j(x, y)=O if xyCB. 

By employing the couplings (j.,..,.).,.:.~ B, we define a random walk as in 
the theorem. If this random walk is recurrent, then 

I j.,-.,.I" I f ( x ) - f (Y ) l  2<~ (40) 
.x'.v E B 



164 Merkl and Wagner 

with f as specified in the iemma, so that we may define a twist map, 

a , ( f )  := (~) a.~/-(.,.)(x): a# ---, d (41) 
.~E | "  

As a basic assumption, (*~ the states to satisfy Bogoliubov's inequality, 
which yields, in particular, 

2 

)) to(K) (42) dto(a.~(f)A) .~= o-..< flto (~ (AA*+A*A 

where fl = 1/k B T, 

d d (a.,.(f)) a,(f)H) .,. 
K = d s s ~  =o,,=o 

and 

to(K)= ~ f (x) f (y) j (x ,y)  
x ,  y E  |'" 

From (i),  (ii), and inequality (40)  

Ito(K)12-.<�89 ~ Ij(x, Y)I [ . f ( x ) - f ( ) ' ) ] 2 < � 8 9  (43) 
x ,  y e V  

Since with A E ~ A  and  f ( x ) =  1 at every site x E  A we have 

d .,= d .,-=o -~ssto(as(f)A) = ~--ss to(a,.A ) (44) 
0 

for every A �9 "F, we infer from the inequalities (42) and (43) that 

d .~ = 0, A ~ ~.4 (45) 
d'ss to(a"A ) =o 

holds for every A �9 ~//" and thus on o4, which implies the invariance of the 
equilibrium states. 

Concluding, we note that the algebraic approach of this section based 
on Bogoliubov's inequality also applies to classical systems. 

5. C O N C L U D I N G  R E M A R K  

The recurrence criterion for the absence of continuous symmetry 
breaking is clearly more general but also less practical than the notion of 
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a lower critical dimension. The reason is that proving the recurrence of a 
random walk on a given graph may not be easy. In some cases this task 
can be simplified by a suitable modification of the couplings determining 
the jump probabilities. Consider, for instance, a second set of couplings 
(~x.,.)x:.~s which provides upper bounds for the original ones, 

[K.,..,.I ~< 1~,-.,.[, ~ ,  E B (46) 

If the random walk on ~ with jump probabilities 

,f Ig,.,,I/E=~ ~bCx~ Ig~=l, xyeg (47) 
fi~'" = (0, " otherwise 

is recurrent, then the lemma also holds with the original couplings, since 

txx.,.I.lf(x)-fIy)12<~ ~ Iffx.,.l.lf(x)-f(.v)12<e (48) 
xy ~ B .~:y ~ B 

and the G-invariance of the equilibrium states with the couplings (x.,..,.)x,.~ B 
follows. 
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In the final stages of our work we had come to believe that the 
transience of random walks on graphs implies symmetry breakdown. We 
are indepted to Michael Eisele for quickly producing a counterexample, 
which clearly showed that this is not the case. We thank Ted Burkhardt for 
critically reading the manuscript. 
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